Rubber Dampers in Modern Mechanical Systems: A Comprehensive Review of Design, Applications, and NVH Performance

¹Kumari Anu Rani, ²Dr. Arvind Gwatiya ¹M. Tech Scholar, ²Assistant Professor

¹Department of Mechanical Engineering, Vedica Institute of Technology Bhopal, (M.P.)

²Department of Mechanical Engineering, Vedica Institute of Technology Bhopal, (M.P.)

Email: 1 raushnianu08@gmail.com, 2 arvindmpu@gmail.com.com

Abstract: Rubber dampers are essential components in mechanical systems, playing a pivotal role in minimizing vibrations, reducing noise, and improving structural integrity. Through their viscoelastic properties, rubber dampers effectively absorb and dissipate mechanical energy, making them indispensable in applications ranging from automotive and aerospace systems to industrial machinery and civil engineering. This review presents a comprehensive examination of rubber damper technologies, covering their material characteristics, design considerations, and integration in various mechanical systems. Special attention is given to their function in mitigating Noise, Vibration, and Harshness (NVH) in internal combustion engine vehicles and electric vehicles, where evolving powertrain designs and customer expectations necessitate advanced damping solutions. The review also highlights recent advancements, including hybrid and magnetorheological dampers, as well as experimental techniques for vibration analysis. Future directions emphasize innovative materials, improved modeling approaches, and expanded use in next-generation transportation and infrastructure systems.

Keywords: Rubber dampers, vibration control, NVH, viscoelastic materials, acoustic comfort, electric vehicles, damping solutions, energy dissipation, powertrain noise, vibration isolation, hybrid dampers, noise reduction.

I. INTRODUCTION

Rubber dampers play a vital role in mitigating vibrations within a wide range of mechanical systems, offering effective solutions for reducing unwanted noise and structural stress [1]. Their capacity to absorb and dissipate energy through viscoelastic deformation makes them highly valuable across diverse industries, including automotive, aerospace, industrial machinery, and civil engineering. The inherent properties of rubber—such as elasticity and damping efficiency—enable these dampers to effectively attenuate vibrations caused by engine operations, machinery motion, and environmental disturbances [2].

Commonly referred to as shock absorbers or rectangular buffers, rubber dampers are specifically designed to minimize the transmission of shock and vibration to surrounding structures. This is achieved through controlled deflection of the rubber material under load. Typically, the construction of these dampers involves bonding rubber to a metal plate equipped with mounting holes, allowing for easy and secure installation [3].

Rubber dampers are available in a wide range of dimensions and hardness levels to suit various operational needs. Additionally, custom designs can be developed to meet specific performance requirements, ensuring optimal vibration control tailored to individual applications [4].

^{*} Corresponding Author: Kumari Anu Rani

A. Types of Fire Dampers

Fire dampers come in two primary types, selected based on building design and code requirements:

- Dynamic Fire Dampers
- Static Fire Dampers

Dynamic fire dampers are typically installed in vertical HVAC system barriers. These dampers are spring-loaded and remain operational even during a fire. When a fire is detected, integrated fans trigger the dampers to close, effectively stopping airflow and helping to contain the fire.

Static fire dampers, on the other hand, are usually located in horizontal barriers. They are designed to shut immediately upon fire detection. As airflow ceases due to a drop in air pressure, all fans stop, helping to prevent the spread of fire.

While a range of damper types exists, they all share a common goal: controlling airflow. Some enhance indoor comfort by regulating temperature, while others are critical life safety components. Fire dampers, smoke dampers, and combination fire/smoke dampers are essential to maintaining building safety and ensuring compliance with fire protection codes. Choosing the right type—dynamic or static—is crucial for effective fire containment and occupant protection..

II. VEHICLES NOISE

The regulation of road transport noises as it effects outsider observers (i.e., someone who is not within the vehicle) is a topic of law in the majority of nations. While there is no any governmental oversight of interior vehicle noise, such oversight is crucial because excessive sound level is unpleasant and exhausting for the minority of driving and travelers. In these perspective, a car's internal sound management should be a key component of its design. Unfortunately, how much of this (i.e., the reducing of interior noise) is done dependent largely on "market" factors, i.e., how much a lower internal sound levels are a sales point for that specific category and model of a transport [5], [6].

Given the current situation—where there are almost no legislative restrictions on the internal sound levels of vehicles in the majority of nations—this is only reasonable. However, it is not always true that a plan of sound reductions from the perspective of "interiors" or occupation will inevitably result in a lower level of "external" sound. It is quite easy to design and build a car that is incredibly silent for its occupants but yet has excessive airborne exhaust noise, engine noise, or even road noise to the outer listener by properly using voice elements, isolator, and suppressing of vibrating forces.

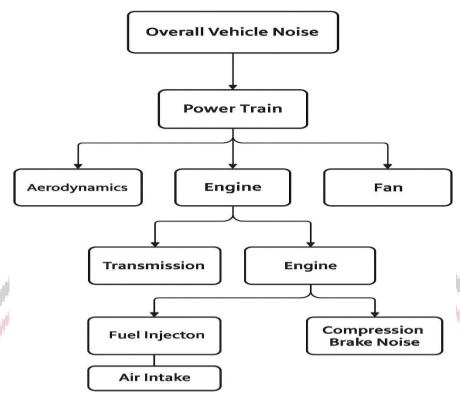


Figure 1 Different types of noise produce in vehicle

In generally, nevertheless, it is reasonable to assume that lowering exhaust sound to a level where it blends in with engines sound will satisfy all regulatory criteria. Additionally, this will categorize the aforementioned car as "silent" or "fairly quiet" from the perspective of an outside observer.

Typically, such a level of silence can be accomplished without significantly reducing power. The only situation where this strategy might run into actual issues is with some sporty cars that have low platform clearance. In this instance, challenges arise from accommodating the required silencer volumes [1], [2], [13], [3], [4], [7]–[12].

A. Methods of Analyzing Vehicle Noise

Road driving noise and vibration analysis uses a wide variety of techniques. They cover the entire spectrum, from simple "cut-and-dry" techniques to the use of sophisticated test rigs and instrumentation, etc., to enable in-depth analysis of sound issues. The automotive sector frequently uses specialized equipment, such as tyre thumping meter, to analyze certain sound source.

Some of the test and evaluation methods used for the analysis of road vehicle noise are listed in Table 1.1, but this list is not exhaustive. On the other hand, every automobile manufacturer may not employ such an extensive range of testing and measurement equipment.

Column 1 contains a partial list of some of the testing and assessment techniques used to analyze road driving sound, but it is not all-inclusive. On the other hand, not all automakers might use such a wide variety of test & measuring tools.

B. Engine Noise

In road cars, the engine is the main source of noise. Isolating yourself from engine noise may help to lessen its impact. The engine unit is mounted on flexible mounts to do this. Unfortunately, using this approach makes perfect isolating difficult. The level of flexibility required for total engine unit isolation would lead to a mount that is far too flexible. The fact that the supports to which the robust mounting are fastened is themselves quite flexible and could be aroused by, for examples, highway sound, further complicates the issue. The supports may also be aroused by its own excitation's feedback from the suspension's unsprang masses. Because of this, the designers must find the best compromise feasible.

III. THE IMPORTANCE OF NVH TESTING IN ELECTRIC VEHICLES

NVH (Noise, Vibration, and Harshness) testing plays a critical role in the development of electric vehicles (EVs), which mark a significant shift in automotive design and consumer expectations. Unlike traditional vehicles, EVs operate with near-silent powertrains, making any remaining noises, vibrations, or harsh sensations far more noticeable to occupants. As a result, NVH performance is a key indicator of perceived quality for manufacturers and consumers alike.

The challenge is compounded by increasingly shortened development cycles in the automotive industry, which leave less time for thorough NVH analysis. Additionally, modern EV designs often incorporate lightweight materials to enhance

efficiency—an approach that can inadvertently introduce new NVH issues. For acoustic engineers, this creates the complex task of designing quiet, comfortable, and refined cabin environments in vehicles where even the smallest irregularities in sound or vibration are easily detected.

A. Acoustic Comfort

NVH testing in electric vehicles is essential for maintaining acoustic comfort, especially in the absence of traditional engine noise. Although EVs are inherently quieter than internal combustion vehicles, they still generate sounds from electric motors, inverters, and HVAC systems. To ensure a serene cabin environment, NVH testing assesses and optimizes sound insulation and noise sources. Engineers employ advanced materials, component positioning strategies, and active noise cancellation technologies to minimize interior noise and deliver a refined, quiet driving experience.

B. Vibration and Harshness Management

Electric motors produce distinct vibration patterns compared to combustion engines. NVH testing aims to identify, analyze, and mitigate these vibrations to enhance ride comfort. This involves studying the behavior of electric motors, drivetrains, and suspension systems under various driving conditions. By using simulation tools and real-world testing, engineers can trace the root causes of vibrations and apply design modifications or damping solutions. Effective control of vibration and harshness improves ride smoothness, reduces driver fatigue, and elevates overall vehicle quality.

C. Powertrain Integration

Electric powertrains consist of multiple components—including motors, batteries, inverters, and control systems—that must operate harmoniously. NVH testing evaluates how these elements interact, especially under different load and driving conditions, to ensure minimal noise and vibration. A comprehensive understanding of system dynamics enables engineers to optimize powertrain integration, enhancing both performance and acoustic behavior. This ensures EVs deliver a consistently smooth, quiet, and responsive experience across diverse driving scenarios.

D. Customer Expectations

Consumers often expect EVs to provide superior quietness and refinement. NVH testing plays a pivotal role in meeting and exceeding these expectations by quantifying and minimizing undesirable noise and vibration. Key aspects such as quiet acceleration, low cabin noise, and minimal harshness directly impact perceived quality. By focusing on NVH performance, automakers can boost customer satisfaction, strengthen brand perception, and enhance the appeal of EVs in a competitive market.

E. Regulatory Compliance

Like all vehicles, EVs must adhere to noise regulations, particularly those aimed at pedestrian safety. NVH testing ensures compliance with local and global noise emission standards, especially concerning external operational sounds. By evaluating vehicle noise levels early in development, manufacturers can integrate sound solutions proactively—avoiding costly revisions and ensuring that compliance does not compromise comfort or performance.

F. Innovation and Differentiation

Thorough NVH testing fosters innovation in electric vehicle design. Early detection of NVH challenges enables the use of cutting-edge solutions such as next-generation soundproofing materials, active noise control systems, and refined powertrain layouts. These advancements not only enhance vehicle comfort and acoustic quality but also help manufacturers differentiate their EVs in a crowded market. NVH performance thus becomes a hallmark of innovation, contributing to customer satisfaction and long-term brand value.

V. CONCLUSION

Rubber dampers are vital components in modern mechanical systems, offering effective solutions for reducing noise, vibration, and harshness (NVH) across various industries, including automotive, aerospace, and civil engineering. Their viscoelastic properties allow them to absorb and dissipate mechanical energy, enhancing system performance, durability, and user comfort. With the growing shift toward electric vehicles and lightweight structures, the demand for advanced damping solutions has increased, making rubber dampers essential for maintaining acoustic comfort, managing vibrations, and meeting regulatory standards. Recent innovations such as hybrid designs and smart damping technologies continue to expand their capabilities. As mechanical systems evolve, future research will focus on optimizing materials, refining modeling techniques, and exploring broader applications to ensure rubber dampers remain at the forefront of NVH control and system refinement.

REFERENCES

- [1] C. B. Singh, A. Kumar, C. Gupta, S. Cience, T. Echnology, and D. C. Dc, "Comparative performance evaluation of multi level inverter for power quality improvement," vol. 12, no. 2, pp. 1–7, 2024.
- [2] A. Kumar and S. Jain, "Multilevel Inverter with Predictive Control for Renewable Energy Smart Grid Applications," *Int. J. Electr. Electron. Res.*, vol. 10, no. 3, pp. 501–507, 2022, doi: 10.37391/IJEER.100317.
- [3] S. Kumar, A. Kumar, C. Gupta, and A. Chaturvedi, "Future Trends in Fault Detection Strategies for DC Microgrid," *Proc. 2024 IEEE 16th Int. Conf. Commun. Syst. Netw. Technol. CICN 2024*, pp. 727–731, 2024, doi: 10.1109/CICN63059.2024.10847358.
- [4] C. Gupta and V. K. Aharwal, "Optimizing the performance of Triple Input DC-DC converter in an Integrated System," *J. Integr. Sci. Technol.*, vol. 10, no. 3, pp. 215–220, 2022.
- [5] S. Khan, C. Gupta, and A. Kumar, "An Analysis of Electric Vehicles Charging Technology and Optimal Size Estimation," vol. 04, no. 04, pp. 125–131, 2021.
- [6] K. Jagwani, "A Critical Survey on Efficient Energy Techniques for DC Drives based System," pp. 87–93, 2018.
- [7] S. Kumar, A. Kumar, C. Gupta, A. Chaturvedi, and A. P. Tripathi, "Synergy of AI and PMBLDC Motors: Enhancing Efficiency in Electric Vehicles," *IEEE Int. Conf.* "Computational, Commun. Inf. Technol. ICCCIT 2025, pp. 68–73, 2025, doi: 10.1109/ICCCIT62592.2025.10927757.
- [8] S. Kumar, A. Chaturvedi, A. Kumar, and C. Gupta, "Optimizing BLDC Motor Control in Electric Vehicles Using Hysteresis Current Controlled Boost Converters," *Proc.* 2024 IEEE 16th Int. Conf. Commun. Syst. Netw. Technol. CICN 2024, pp. 743–748, 2024, doi: 10.1109/CICN63059.2024.10847341.
- [9] A. Kumar and S. Jain, "Critical Analysis on Multilevel Inverter Designs for," vol. 14, no. 3, 2022, doi: 10.18090/samriddhi.v14i03.22.
- [10] A. Kumar and S. Jain, "Enhancement of Power Quality with Increased Levels of Multi-level Inverters in Smart Grid Applications," vol. 14, no. 4, pp. 1–5, 2022, doi: 10.18090/samriddhi.v14i04.07.
- [11] A. Kumar and S. Jain, "Predictive Switching Control for Multilevel Inverter using CNN-LSTM for Voltage Regulation," vol. 11, pp. 1–9, 2022.
- [12] C. Gupta and V. K. Aharwal, "Design of Multi Input Converter Topology for Distinct Energy Sources," *SAMRIDDHI*, vol. 14, no. 4, pp. 1–5, 2022, doi: 10.18090/samriddhi.v14i04.09.
- [13] C. Gupta and V. K. Aharwal, "Design and simulation of Multi-Input Converter for Renewable energy sources," *J. Integr. Sci. Technol.*, vol. 11, no. 3, pp. 1–7, 2023.
- [14] Sheikhi, J., Fathi, M., & Rahnavard, R. (2020, April). Natural rubber bearing incorporated with high toughness steel ring dampers. In Structures (Vol. 24, pp. 107-123). Elsevier.
- Jiang, C., Zhang, H., Ling, L., Ma, X., Gao, J., Ding, X., ... Zhai, W. (2024). The effect of yaw damper performance degradation on carbody hunting of high-speed trains. Vehicle System Dynamics, 1–24. https://doi.org/10.1080/00423114.2024.2317397
- [16] Qin, Y., Tang, X., Jia, T., Duan, Z., Zhang, J., Li, Y., & Zheng, L. (2020). Noise and vibration suppression in hybrid electric vehicles: State of the art and challenges. Renewable and Sustainable Energy Reviews, 124, 109782. https://doi.org/10.1016/j.rser.2020.109782
- [17] Nakamura, A., Kasuga, A., & Arai, H. (1998). The effects of mechanical dampers on stay cables with high-damping rubber. *Construction and Building Materials*, 12(2-3), 115-123.
- [18] Nygren, J., Boij, S., Rumpler, R., & O'Reilly, C. J. (2023). Vehicle-specific noise exposure cost: Noise impact allocation methodology for microscopic traffic simulations. Transportation Research Part D: Transport and Environment, 118, 103712. https://doi.org/10.1016/j.trd.2023.103712
- [19] Nakamura, A., Kasuga, A., & Arai, H. (1998). The effects of mechanical dampers on stay cables with high-damping rubber. *Construction and Building Materials*, 12(2-3), 115-123.
- [20] Lee, H., & Lee, D. J. (2020). Rotor interactional effects on aerodynamic and noise characteristics of a small multirotor unmanned aerial vehicle. Physics of Fluids, 32(4).

and the same of